[1]丁琳译,赵 屹,卜德超,等.《伤寒论》太阳病篇药症规律挖掘[J].陕西中医,2022,(1):83-89.[doi:DOI:10.3969/j.issn.1000-7369.2022.01.021]
 DING Linyi,ZHAO Yi,BU Dechao,et al.Exploring the rules of medication and symptom treatment in Taiyang disease chapter of treatise on Cold Damage Diseases[J].,2022,(1):83-89.[doi:DOI:10.3969/j.issn.1000-7369.2022.01.021]
点击复制

《伤寒论》太阳病篇药症规律挖掘
分享到:

《陕西中医》[ISSN:1000-7369/CN:61-1281/TN]

卷:
期数:
2022年1期
页码:
83-89
栏目:
学术探讨
出版日期:
2022-01-05

文章信息/Info

Title:
Exploring the rules of medication and symptom treatment in Taiyang disease chapter of treatise on Cold Damage Diseases
作者:
丁琳译1赵 屹1卜德超2董 雷1高 凯1曹婉琛1韩丽娜1
(1.北京中医药大学,北京 100029; 2.中国科学院计算技术研究所,北京 100190)
Author(s):
DING LinyiZHAO YiBU DechaoDONG LeiGAO KaiCAO WanchenHAN Li'na
(Beijing University of Chinese Medicine,Beijing 100029,China)
关键词:
《伤寒论》 太阳病篇 数据挖掘 网络药理学 用药规律 桂枝汤 桂枝汤证
Keywords:
Treatise on Cold Damage Diseases Taiyang disease chapter Data mining Network pharmacology medication rules Guizhi decoction Guizhi decoction syndrome
分类号:
R 222
DOI:
DOI:10.3969/j.issn.1000-7369.2022.01.021
文献标志码:
A
摘要:
目的:分析《伤寒论》太阳病篇的条文,归纳其用药特点,挖掘其用药规律和药症规律。探究药症评分较高的桂枝汤和以“发热,头痛,汗出,恶风,浮脉”为主症的桂枝汤证的相关治疗机制,为现代化和科学化解释经方的治疗机制研究提供参考。方法:本研究使用FangNet(http://fangnet.org)平台对太阳病篇有方症的条文以医案的形式进行录入,使用数据挖掘分析其用药的性味归经特点,药对和药症组合规律,并运用网络药理学相关方法揭示桂枝汤和桂枝汤证共有靶基因和相关的生物学过程与通路。结果:太阳病篇符合研究条件的条文共121个病例,58味中药,症状210余种。经平台分析桂枝汤证的主要症状发热,浮脉,恶寒,出汗,恶风为太阳病篇的高频症状,与组成桂枝汤的甘草、大枣、桂枝、生姜、芍药这五味中药关系密切,且这五味中药属太阳病篇的核心及高频用药。经网络药理学分析,发现桂枝汤在治疗桂枝汤证时主要与细胞磷酸化从而促进程神经元的死亡,激活DNA转录因子的活性和RNA聚合酶Ⅱ正向调控pri-miRNA转录的生物过程相关; 并与免疫系统和心血管通路相关。结论:58味中药可以治疗210余种症状,足以体现仲景用药精妙,组方严谨。组成桂枝汤的中药位居前列,印证了桂枝汤为“群方之首”。不论是平台分析的药症关系还是从分子生物学机制,均能证明桂枝汤与桂枝汤的证关系密切。
Abstract:
Objective:The article of treatise on Taiyang disease chapter of Treatise on Cold Damage Diseases was analyzed,the characteristics of medication were summarized,the rules of medication and symptoms were explored,and the relevant therapeutic mechanisms of Guizhi decoction with high symptom score and Guizhi decoction syndrome with fever,headache,sweating,bad wind and floating pulse as the main symptoms were explored.Methods:In this study,FangNet(http://fangnet.org)platform was used to input prescriptions of Taiyang Disease Chapter in the form of medical records,and data mining was used to analyze the characteristics of herb use,herb pairs and syndrome combination,then the network pharmacology related methods were used to reveal the common target genes and related biological processes of Guizhi decoction and Guizhi decoction syndrome and pathways.Results:A total of 121 cases,58 Chinese herbs and more than 210 kinds of symptoms met the study conditions of Taiyang Disease Chapter.Through platform analysis,the main symptoms of Guizi decoction syndrome,fever,floating vein,aversion to cold,sweating and aversion to wind,are the high-frequency symptoms of Taiyang Disease Chapter,which are closely related to the five traditional Chinese medicines composed of Guizi decoction,such as GanCao,Daozi,Guizhi,Shaoyao and Shengjiang,and these five traditional Chinese medicines belong to the core and high-frequency medication of Taiyang Disease Chapter.Through network pharmacological analysis,it was found that Guizhi decoction in the treatment of Guizhi Decoction syndrome mainly promotes the death of progressive neurons through cell phosphorylation,activates the activity of DNA transcription factors and positively regulates the biological process of PRI-mirNA transcription by RNA polymerase Ⅱ.It is associated with the immune system and cardiovascular pathways.Conclusion:58 herbs can treat more than 210 symptoms,enough to reflect ZhongJing medicine exquisite,rigorous prescription.Both the relationship between drugs and symptoms analyzed by platform and the molecular biological mechanism can prove that Guizhi decoction is closely related to the syndrome of Guizhi decoction.

参考文献/References:

[1] 李培生,刘渡舟.伤寒论讲义[M].5版.上海:上海科技出版社,1985:5.
[2] 叶平胜,牟重临.《伤寒论》太阳病方证的几何图解[J].浙江中医杂志,2014,49(10):718-719.
[3] Yang J,Li Y,Liu Q,et al.Brief introduction of medical database and data mining technology in big data era[J].Evid Based Med,2020,13(1):57-69.
[4] 王 康,尹玉洁,李雅文,等.数据挖掘方法在中医医案研究中的应用[J].世界中医药,2021,15(7):1-6.
[5] 刘永瑞,于 晶,刘 南.基于数据挖掘的张仲景《伤寒论》用药规律探讨[J].亚太传统医药,2019,15(7):177-179.
[6] Li S,Zhang B.Traditional Chinese medicine network pharmacology:Theory,methodology and application[J].Chin J Integr Med,2013,19(5):110-120.
[7] Li S.Exploring traditional Chinese medicine by a novel therapeutic concept of network target[J].Chin J Integr Med,2016,22(9):647-652.
[8] 刘渡舟,傅士垣.《伤寒论诠解》[M].北京:人民卫生出版社,2013:13-140.
[9] 段治钧.《胡希恕越辨越明释伤寒》[M].北京:中国中医药出版社,2009:40-200.
[10] 王天芳.中医诊断学[M].北京:中国医药科技出版社,2012:15-18.
[11] 国家药典委员会.中华人民共和国药典[M].北京:中国医药科技出版社,2020:213-216.
[12] Bu D,Xia Y,Zhang J,et al.Fangnet:Mining herb hidden knowledge from TCM clinical effective formulas using structure network algorithm[J].Comput Struct Biotechnol J, 2020, 4(12):62-71.
[13] Wu Y,Zhang F,Yang K,et al.Symmap:An integrative database of traditional Chinese medicine enhanced by symptom mapping[J].Nucleic Acids Res,2019,8(1):1110-1117.
[14] Fang S,Dong L,Liu L,et al.HERB:A high-throughput experiment and reference-guided database of traditional Chinese medicine[J].Nucleic Acids Res,2021,8(1):1197-1206.
[15] 陈 可,龚 轩.从《伤寒论》条文看所用芍药为白芍[J].医学争鸣,2018,9(6):56-59.
[16] 李宇铭.《伤寒论》方药的寒温并用配伍机理[J].辽宁中医药大学学报,2008,10(8):19-20.
[17] 陈文恬.仲景运用寒凉药物特点研究[D].上海:上海中医药大学,2019.
[18] 萧至健.《伤寒论》太阳病篇发热辨治规律研究[D].北京:北京中医药大学,2016.
[19] 刘玉良,张文立.《伤寒论》太阳病篇多见肺病证的机理探析[J].中华中医药学刊,2011,29(12):2805-2807.
[20] 赵东英,梅晓萍.桂枝汤在伤寒论中的地位[J].辽宁中医杂志,2011,38(9):1870-1872.
[21] 姜 勋,韩延华.浅析《伤寒论》中桂枝汤及其类方[J].河南中医,2010,30(7):630-633.
[22] 王嘉琛,叶 花,刘 培,等.十八反药对甘草与甘遂配伍前后及其相应经方甘遂半夏汤对大鼠脏器及生化指标影响的研究[J].山西中医学院学报,2018,19(1):15-16,24.
[23] 闫雪祎.《伤寒论》桂枝汤类方中芍药运用探讨[J].江苏中医药,2017,49(10):14-15.
[24] Ratner L.Molecular biology of human T cell leukemia virus[J].Semin Diagn Pathol,2020,37(2):104-109.
[25] Milner DA.Malaria pathogenesis[J].Cold Spring Harb Perspect Med, 2018,8(1):a25569.
[26] Calvopina M,Segovia G,Cevallos W,et al.Fatal acute chagas disease by trypanosoma cruzi DTU ecuador[J].BMC Infect Dis,2020,20(1):143.
[27] Iroungou BA,Boundenga L,Guignali ML,et al.Human African trypanosomiasis in two historical foci of the estuaire province,gabon:A case report[J].SAGE Open Med Case Rep,2020,8(4):13-90.
[28] Anversa L,Tiburcio MGS,Richini-Pereira VB,et al.Human leishmaniasis in Brazil:A general review[J].Rev Assoc Med Bras,2018,64(3):281-289.
[29] 王宏蔚,吴智兵,杨 敏,等.桂枝汤现代药理作用研究概况[J].江苏中医药,2020,52(12):85-89.
[30] 王文炎,马志毅.桂枝汤类方治疗类风湿关节炎的理论探讨[J].风湿病与关节炎,2020,9(2):55-58.
[31] Du XL,Sui F,Huo HR,et al.Reciprocal effects of Guizhi decoction to the Guizhi decoction syndrome by toll-like receptor mRNA expression and cytokines secretion[J].Chin J Integr Med, 2013,19(11):826-835.
[32] Chen J,Zhang Y,Wang Y,et al.Potential mechanisms of Guizhi decoction against hypertension based on network pharmacology and Dahl salt-sensitive rat model[J].Chin Med, 2021,16(1):34.

相似文献/References:

[1]杨亮,李富贤.《伤寒论》与《金匮要略》中现版药典未收录药名考证[J].陕西中医,2016,(10):1421.
[2]沈多荣,陈汀,黄玉宇△,等.汤剂加水量参数古今应用探讨*[J].陕西中医,2019,(11):1634.
 SHEN Duorong,CHEN Ting,HUANG Yuyu,et al.Research and discussion on the ancient and modern application of water quantity parameters of decoction[J].,2019,(1):1634.
[3]王桂彬,姜晓晨,刘福栋,等.《伤寒论》干呕辨治管窥[J].陕西中医,2022,(4):496.[doi:DOI:10.3969/j.issn.1000-7369.2022.04.021]

备注/Memo

备注/Memo:
基金项目:国家重点研发计划项目(2018YFC1704106)
更新日期/Last Update: 2022-01-09